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Abstract—Device authentication and identification are impor-
tant to ensure security in spectrum access and management.
While prior works have studied radio frequency fingerprinting
for such purpose and demonstrated its effectiveness, most works
have been focusing on closed-set classification, where only a
known set of authorized transmitters appears to be identified.
However, unauthorized transmitters can also exist in a designated
band. Therefore, recognizing and tracking those unauthorized
transmitter behaviors is necessary to protect spectrum security.
This work investigates this problem and proposes an Anomaly
Recognition and Tracking (ART) framework. The ART frame-
work first learns a closed-set classifier between the authorized
transmitters and modifies the classifier to detect anomaly signals.
Then, the framework collects the detected anomaly signals and
performs unsupervised clustering to assign labels to the predicted
anomaly transmitters. Finally, the framework incrementally
learns the anomaly transmitter features with limited signals and
updates the classifier accordingly. We evaluate our proposed
framework with a WiFi dataset and show that with 10% false
alarm rate, it can detect more than 99% anomaly signals.
Moreover, our proposed framework can distinguish between and
learn the features of different anomaly transmitters with as few
as 10 signals received from each anomaly transmitter. Finally,
the framework can update the classifier, track the anomaly
transmitters, and classify among all authorized and anomaly
transmitters with more than 99% accuracy.

Index Terms—Radio frequency fingerprinting, deep learning,
open-set recognition, anomaly transmitter recognition

I. INTRODUCTION

A. Motivation

Spectrum sharing (SS) is a promising solution to address
spectrum inefficiency and maximize spectrum utilization. SS
technology allows unlicensed or secondary users (SUs) to
opportunistically access the licensed bands, as long as they
do not cause harmful interference to licensed or primary users
(PUs) [1]. One example is the Citizen’s Broadband Radio
Service (CBRS) band. Established by the Federal Communica-
tions Commission (FCC) in 2015, the CBRS band (3.55−3.70
GHz) has a three-tiered access and authorization framework to
accommodate shared federal and non-federal use of the band
[2]. A frequency coordinator Spectrum Access System (SAS)
manages the access and operations in the CBRS band based
on the information from Environmental Sensing Capability
(ESC), which monitors the band.

In any SS system, security issues are of great concern and
impose unique challenges [3]. Therefore, an integral part of
a spectrum-sharing system is spectrum monitoring. Spectrum
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monitoring aims to continuously determine whether one or
more radio frequency (RF) transmitters are transmitting be-
yond their authority. The meaning of the word ‘authority’ can
be diverse and specific to certain systems. Examples include
unauthorized access to a frequency band, lower-tier users
emulating higher-tier users, secondary transmitters not backing
off in the presence of primary users, etc. For a given band and a
set of legitimate transmitters, all of these monitoring problems
can be solved if we can achieve the following two capabilities
in a monitoring system.

• Anomaly transmitter recognition: Individually recognize
all authorized transmitters and flag them as anomalous
transmitters if not identified as authorized.

• Anomaly transmitter tracking: If anomalous transmitters
are detected, track the subsequent activities of each
individual anomalous transmitter.

An effective tool for anomaly transmitter recognition is RF
fingerprinting, which has been proposed to enhance the secu-
rity of wireless networks [4]. The idea of RF fingerprinting is
to extract and leverage the additionally embedded information
in the distorted RF signals, where the distortions come from
transceiver hardware imperfections and wireless channels [5].
Therefore, RF fingerprinting essentially exploits the physical
features of the transmitter circuitries, and is a physical layer
authentication (PLA) technique. As a result, RF fingerprinting
has the advantage of being robust against spoofing attacks
[6] and being flexible with different wireless protocols. Prior
works exploiting RF fingerprinting for transmitter identifica-
tion have obtained inspiring results. For example, the authors
in [7] showed the feasibility and effectiveness of RF fin-
gerprinting to identify transmitters using raw I/Q data with
different protocols and modulation schemes. Therefore, RF
fingerprinting is able to augment existing security protocols
in not only SS systems but any scenarios where transmitter
authentication is required.

Many RF fingerprinting works focus on closed-set classi-
fication, where the task is to recognize a transmitter among
a known set of authorized transmitters. While closed-set
classification reasonably simplifies the problem formulation,
it is inapplicable in many realistic deployments where unex-
pected/anomalous transmitters can be present. For example,
in primary user emulation attacks, anomalous transmitters
can mimic incumbent transmitters to enforce the frequency
coordinator to vacate the specific band [8]. To address such
potential attacks, anomaly transmitter recognition, also known



as open-set recognition, is a crucial task.
Open-set recognition enables recognizing anomaly transmit-

ters in addition to recognizing legitimate transmitters. Studies
have been conducted in this area. For example, the authors
in [9] examine the open-set transmitter recognition problem
and discuss several approaches for solving it. However, none
of the prior works analyzed the detected anomaly transmitters
further.

In this work, we go beyond anomaly detection by iden-
tifying and remembering the anomaly transmitters to track
their behaviors. By tracking their behaviors, we can potentially
gain more insights into the possible threats presented by the
anomaly transmitters and react accordingly. For example, in
the context of the CBRS band, if we detect unauthorized
transmitters causing interference to primary users, such as
navy radar, then it is worth understanding whether the source
of interference is one base station (BS) or multiple BSs
and whether there are repeated violations by the same set
of offenders. Therefore, it is crucial to monitor the ongoing
transmissions so that the coordinator SAS can detect, classify,
and localize the transmitters.

In summary, anomaly transmitter recognition enables us
to take security measures against unauthorized transmitters.
On top of that, tracking the behaviors of those anomalous
transmitters allow further analysis, provide additional insights
about the ongoing attacks and assist in future defenses. In
this work, we study the anomaly transmitter recognition and
tracking problem and propose an online incremental learning
framework to continuously identify and remember anomaly
transmitters in a given network. This is a non-trivial problem
involving many challenges, such as unsupervised, few-shot,
and incremental learning. To the best of the authors’ knowl-
edge, this is the first work considering unsupervised clustering
for the task of labeling anomaly transmitters. Moreover, we
propose a novel method to remove the false positive signals,
which are the wrongly rejected signals from authorized trans-
mitters, to improve the anomaly label assignment performance.

B. Contributions

Our contributions can be summarized as follows:
• We formulate the anomaly transmitter recognition and

tracking problem. Based on the idea of open-set recogni-
tion, the problem consists of three stages. First, we want
to classify and admit authorized transmitters. Second, we
want to recognize and reject anomalous signals. Finally,
we want to track the anomaly transmitters by identifying
them in future transmissions.

• We develop a framework called Anomaly Recognition
and Tracking (ART) to solve the above problem. Initially,
ART is trained with signals from authorized transmitters
for open-set recognition in the first stage. After the train-
ing, it can be deployed to reject anomalous signals while
classifying authorized transmitters. Then, unsupervised
clustering is performed on the signals, and the cluster-
ing results are processed for anomaly transmitter label
assignment. Finally, the labeled anomalous signals are

used in the last stage, where the framework incrementally
learns the anomaly transmitters. By doing so, the ART
framework is able to continuously update its knowledge
so as to identify the anomaly transmitters and track their
occurrences.

• We conduct extensive experiments to evaluate the pro-
posed ART framework with real captured WiFi signals.
First, we examine and compare different candidate al-
gorithms in ART. We find that using Openmax [10]
for anomaly detection, HDBSCAN [11] for anomaly
label assignment, and transfer learning for incremental
learning yields the best performance. Then, we conduct
experiments to validate the ART framework. Our ex-
perimental results show that with 10% false alarm rate,
ART is able to detect more than 99% anomalous signals.
Moreover, it is able to distinguish between and learn the
features of different anomaly transmitters with as few
as 10 signals received from each anomaly transmitter.
Finally, the framework can update the classifier, track the
anomaly transmitters, and classify among all authorized
and anomaly transmitters with more than 99% accuracy.

C. Organization of the paper

The rest of the paper is organized as follows. Section II
formulates the anomaly transmitter recognition and tracking
problem. Section III explains the proposed ART framework
to solve the problem. Section IV discusses the experimental
setup to evaluate ART and presents results. Finally, section V
concludes the paper.

II. PROBLEM FORMULATION

In this section, we describe the formulation of the anomaly
transmitter recognition and tracking problem. As discussed in
Section I-A, the problem consists of open-set recognition and
anomaly transmitter tracking. We explain the problem using
Figure 1, where both authorized and unauthorized transmitters
exist in a network. The coordinator should be able to accom-
plish the following three tasks:

Unauthorized

Transmitters TX A

TX B

Authorized

Transmitters

Reject.

Anomaly TX 1.

Reject.

Anomaly TX 1.

Reject.

Anomaly TX 2.

Accept.

Authorized TX A.

Accept.

Authorized TX B.

Decisions

[3]Transmission [3]
TX 1

TX 2

Sensor + Coordinator

Fig. 1. Illustration of the anomaly transmitter recognition and tracking
problem. A blue arrow indicates a transmitted signal, and the number indicates
the order of transmission. Red and green arrows point to the decision made
by the coordinator, and the numbers indicate the corresponding transmissions.

1) Classify authorized transmitters: The first task is to
classify between the authorized transmitters, essentially
a closed-set classification. Figure 1 illustrates this task
with the first recognition and the acceptance of trans-
mitters A and B.



2) Recognize anomaly signals: The second task is to
detect and reject the anomaly signals sent from unau-
thorized transmitters. This task, along with the first task
form the open-set recognition problem. As shown in
Figure 1, this task is illustrated with the rejection of
the anomaly signals.

3) Track anomaly transmitters: The third task is to
remember previously seen unauthorized transmitters and
identify them in future occurrences. This final task
enables the tracking of the anomaly transmitter behav-
iors. As shown in Figure 1, this task is illustrated by
identifying unauthorized transmitters 1 and 2 between
all received anomaly signals.

In this work, we investigate the above tasks. Our goal is
to build a coordinator fc that can take any wireless signal x
as an input and outputs a label ŷ = fc(x). Ideally, for an SS
network with n authorized transmitters, the coordinator should
predict as follows:

ŷ =

{
i, if x is from the i-th authorized transmitter
n+ j, if x is from the j-th anomaly transmitter

where i ∈ {1, 2, . . . , n} and j ∈ Z+.
The challenges and our solutions are discussed in the next

section in detail.

III. APPROACH

In this section, we explain the proposed ART framework
and discuss the detailed implementation of each stage in the
framework.

A. ART Framework

To solve the anomaly transmitter recognition and tracking
problem explained in Section II, we propose the ART frame-
work as shown in Figure 2. The framework consists of two
phases: offline training and online updating.

The offline training phase requires a sensor to collect
training signals from the authorized transmitters. Then, deep
learning is utilized to build a classifier with n + 1 classes,
where n is the number of authorized transmitters, and the
(n+1)th class represents the anomaly. The resulting classifier
is an open-set authenticator, which can detect anomaly signals
as well as classify legitimate signals, thus addressing the
open-set recognition problem. It should be noted that the
ART framework requires prior information from all authorized
transmitters to build the classifier. The detailed implementation
of the classifier is explained in Section III-B.

After the one-time offline training phase, ART allows online
updating during normal operation. The online updating phase
has a three-stage architecture: anomaly detection, anomaly
label assignment, and anomaly feature learning, respectively.

In the online updating phase, the sensor will receive signals
from both authorized and anomaly transmitters during its oper-
ations. Therefore, it will continuously send the received signals
to all three stages of ART. First, the open-set authenticator
will perform anomaly detection by determining the transmitter

labels for each input signal, as explained in detail in Section
III-B. Then, the anomaly label assignment stage takes the
labels produced by the previous stage as input in addition
to the received signals. In the anomaly label assignment
stage, unsupervised clustering is performed to assign labels
to the transmitters associated with the anomaly signals. The
details are explained in Section III-C. Finally, the anomaly
feature learning stage uses the anomaly signals and their
assigned labels to learn their features and update the open-
set authenticator accordingly, as explained in detail in Section
III-D. As a result, the framework can recognize the anomaly
transmitters and track their future occurrences accordingly.

B. Anomaly Detection

The anomaly detection stage essentially solves the open-set
recognition problem by building a classifier with n+1 classes,
where n is the number of known classes. We implement such
a classifier based on the Openmax method in [10]. We use this
method because does not require any unauthorized transmitters
in the training set or heavy training overheads.

First, a closed-set authenticator is trained with the training
signals from n authorized transmitters using a cross-entropy
loss. The authenticator consists of two components, a feature-
extractor, and a classifier, as shown in Figure 3. The inputs
to the feature extractor are equalized 400 × 2 I/Q samples,
and the outputs are feature vectors of length T . Those feature
vectors are then inputted into the classifier. The last dense
layer in the classifier will have exactly n activations. Let
vi be the activation of class i where i ∈ {1, 2, . . . , n}, and
vi > vj for all j ∈ {1, 2, . . . , n}, i ̸= j. Since the last
layer before the output is a softmax layer, which maps the
activations into probabilities for the corresponding classes, the
largest activation thus corresponds to the highest probability.
Therefore, a signal will either be classified as class i or n+1,
the anomaly class. Accordingly, we can generate the activation
for classes i and n+ 1 as follows:

v′i = viwi (1)

v′n+1 = vi(1− wi) (2)

where vi represents the original activation for class i, v′i
represents the modified activation for class i and wi represents
the confidence in class i, as explained below.

The confidence wi can be interpreted as the similarity
between the current activation vi and the collection of the
activations of training signals from class i. Mathematically,
wi is the probability that the activation vi does not belong to
the tail in the distribution of the activations of training signals
from class i. Therefore, wi is computed based on Weibull
distribution as follows:

wi = 1− exp

(
−
( |vi − µi|

λi

)ki
)

(3)

where λi and ki are the Weibull distribution parameters
calculated from the activations of the training signals from
class i, and µi is the average activation of the training signals
from class i.
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Fig. 2. Illustration of the ART framework. An open-set authenticator is trained in the offline phase and deployed on the coordinator in the online phase.
During normal operations, the sensor continuously sends I/Q samples of received signals to the coordinator. The coordinator is able to classify signals from
authorized transmitters, recognize signals from anomaly transmitters, and track the behaviors of the anomaly transmitters by online learning their features.
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Fig. 3. The architecture of a closed-set authenticator. The outputs of the
feature extractor are feature vectors of length T and inputted into the classifier.

Finally, the classifier will determine the label of the input
signal by comparing v′i and v′n+1. If v′i > v′n+1, the signal is
classified as from transmitter i, and if v′i ≤ v′n+1, the signal
is classified as from an anomaly transmitter.

C. Anomaly Label Assignment

After detecting anomaly signals, the framework performs
Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) [11] to assign the labels for them.
DBSCAN [12] is a density-based unsupervised clustering
algorithm that does not require the number of clusters a priori.
DBSCAN defines any two data points p and q as density-
connected with respect to ϵ and ρ if they satisfy Equation (4)
as follows:

p ∈ Nϵ(q) and |Nϵ(q)| ≥ ρ (4)

where ρ is the minimum number of data points in a cluster, ϵ
is a distance parameter and Nϵ(q) is defined in Equation (5).

Nϵ(q) = {dist(p, q) ≤ ϵ} (5)

Accordingly, any two points p and q are density-reachable
from each other if they are both density-connected to another
point o. Then, DBSCAN classifies any data points p and q
to the same cluster if p is density-connected to q or density-
reachable from q.

Based on DBSCAN, HDBSCAN expands clusters by it-
eratively merging the data points with high density within
the same neighborhood, where the distance ϵ is automatically
chosen by the algorithm. Since the significance of distances
between data points degrades in high-dimensional space, we
want to reduce the dimensionality of the inputs into the
clustering algorithm. Therefore, the clustering is performed on
the signal features extracted by the feature extractor shown in
Figure 3 (a), instead of the raw I/Q samples from the received
signals.

However, simply performing clustering on the detected
anomaly signals may lead to false labels. This is because the
anomaly detection stage may yield false positive results, where
the signals from authorized transmitters are wrongly rejected
as anomaly signals. Therefore, a few legitimate signals are
wrongly rejected after anomaly detection and thus undergo
the clustering stage together with the real anomaly signals.
As a result, there will exist a few clusters with the majority
of signals being legitimate signals, as shown in Figure 4 (a).
When the number of authorized transmitters increases, those
false labels can be more and more confusing. Therefore, we
propose the following approach to remove the misleading false
labels, as shown in Figure 4 (b).

First, HDBSCAN is performed on features extracted from
all received signals instead of only on rejected signals. Then,
if a cluster consists of more than τ accepted legitimate signals,
the framework will remove all the signals in that cluster. The
rationale is that when a signal from an authorized transmitter j
is wrongly rejected, its feature vector is still closest to the cen-
ter of the cluster associated with transmitter j. This assumption
is reasonable because even if a rejected signal belongs to the
tail distribution of its true class j, its feature vector is still
closest to the center of cluster j rather than any other cluster
i ̸= j. Therefore, the clustering algorithm can still group the
wrongly rejected signals with the other correctly classified
signals from transmitter j. τ is experimentally chosen to be
80%.

Finally, the clusters with less than ρ = 5 samples are



(a) Visualization of clustering re-
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Fig. 4. Illustrations of anomaly transmitter detection based on clustering.
Each circle represents a feature vector of a received signal. Red, blue
and yellow circles represent signals from three authorized transmitters, and
gray represents anomalous signals. The dotted red line stands for anomaly
detection, where the rejected signals are placed on the lower side, and dotted
circles represent the clustering results. In (a), the clustering is performed only
on rejected signals, so falsely rejected authorized signals can compose false
anomaly clusters. In (b), the clustering is performed on all signals, and the
clusters whose major components are accepted are removed, and the remaining
clusters are detected as signals from distinct anomaly transmitters.

ignored, where ρ is the minimum number of signals for a
cluster not to be considered as noise. A noise cluster consists
of signals whose feature vectors are far from any other clusters.
One possible reason is that some signals are distorted due
to unpredictable variations, such as channels. In such cases,
the resulting feature vectors can be misleading and are thus
discarded. Another possible reason is that a new anomaly
transmitter has just started to transmit and does not provide
enough useful signals yet. If the anomaly transmitter keeps
transmitting, the size of the cluster will increase and become
significant enough to be considered as a new class in some
time. If it stops transmitting, it will not affect the monitored
spectrum much and thus can be safely ignored.

After the removal of authorized clusters and noise clusters,
the remaining signals are considered significant anomaly sig-
nals. These signals are assigned labels given by the clustering
results and will be used for anomaly feature learning in the
next stage.

D. Anomaly Feature Learning

Finally, based on the clustering result and assigned labels,
the framework learns the anomaly transmitter and incorporates
that knowledge into the open-set authenticator. There exist
a few challenges in this learning stage. First, the learn-
ing process should be efficient and lightweight since it is
happening repeatedly in real time. At the same time, only
limited anomaly signals may be available for learning since
the anomaly transmissions are usually sparse, where a few-
shot learning problem needs to be addressed. Finally, the
catastrophic forgetting problem [13] should be considered, and
learning new transmitters should not lead to forgetting learned
authorized transmitters.

The idea of transfer learning [14] can be applied to address
this problem. As shown in Figure 3, the feature extractor is
well-trained in the offline training phase. By exploiting the
feature extractor, we can update the classifier with limited
training signals. In particular, we freeze the feature extractor
and train a new classifier with a modified number of output

classes. The modified output classes consist of all known
transmitters and the newly recognized anomaly transmitters.
At the same time, to avoid catastrophic forgetting, we include
a subset of offline training signals as well as the newly labeled
signals in the training set. The subset size of the offline training
signals is determined by the assumption of the number of
anomaly signals to address the imbalanced training set due
to the limited anomaly transmissions. Finally, the classifier is
able to be online updated, because the updating process only
involves training a classifier with two dense layers on a small
number of signals.

Once the classifier is updated, the open-set authenticator
will be modified accordingly, as explained in Section III-B.
Hence, the ART framework is able to continuously update
while operating, as shown in Figure 2. We evaluate the ART
framework in Section IV.

IV. EVALUATIONS

In this section, we first introduce the dataset used in the
experiments and then explain the experimental setup. Then,
we examine each stage in ART to evaluate the framework.

A. Dataset and Experimental Setup

For evaluations, we use the WiSig dataset [15], because it
includes signals sent from a large number of transmitters. The
dataset contains high SNR WiFi signals captured over the air.
It should be noted that while we use WiFi signals to evaluate
the ART framework, it can be flexibly applied to different
wireless protocols, an advantage of RF fingerprinting.

As shown in [15], the variations in channels and receivers
can introduce additional noise into the data distribution. There-
fore, for the purpose of the experiments in this work, we use
the transmissions from 30 Atheros WiFi transmitters, which
are received by a single USRP receiver in a single day.

Following our prior work [5], we use the received samples
of preambles in a WiFi packet for all signals and pre-process
the data with channel equalization. Each signal has 400×2 I/Q
samples, including the Legacy Long Training Field (L-LTF)
and Legacy Short Training Field (L-STF). After extracting the
preambles, we first estimate and correct the frequency offset in
L-STF, then estimate and equalize the channel using minimum
mean-square error (MMSE) on L-LTF, and finally reapply
the frequency offset to the signal. The signal processing for
detection and channel estimation is applied using MATLAB
R2019b WLAN toolbox with the default parameters, and the
detailed pre-processing procedure can be found in [5].

To evaluate the proposed framework, we conduct experi-
ments to examine each stage accordingly. The purposes and
factors considered for the experiments are presented in Table
I. For all the experiments, we consider 3 anomaly transmitters,
use 5 different randomized combinations of transmitters, and
report the averaged performance.

B. Anomaly Detection

For the evaluations in this section, we consider 3 anomaly
transmitters and different numbers of authorized transmitters.



TABLE I
PURPOSES AND CONSIDERED IMPACT FACTORS OF THE EXPERIMENTS.

Stage Purpose Considered Impact Factor
Anomaly Detection Find best anomaly detection algorithm Number of authorized transmitters

Anomaly Label Assignment Find best unsupervised clustering algorithm Number of authorized transmitters
Anomaly Label Assignment Validate proposed method to remove false positive signals Number of authorized transmitters
Anomaly Feature Learning Validate incremental learning method Number of received signals per anomaly transmitter
Anomaly Feature Learning Examine overall ART performance Number of received signals per anomaly transmitter
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Fig. 5. Comparison of OVA and Openmax for anomaly detection evaluation.

First, we consider two candidate algorithms for anomaly
detection: Openmax, which is explained in Section III-B, and
one-versus-all (OVA) [16]. OVA trains a distinct classifier
for each authorized transmitter j, and each classifier predicts
the probability Pj such that the input signal belongs to j.
Therefore, we will have n classifiers and n probabilities Pj ,
where n is the number of authorized transmitters. Then, if
the corresponding classifier for every transmitter j predicts an
input signal as not belonging to class j, the signal is detected
as an anomaly.

The area under Receiver Operating Characteristic (ROC)
curves is evaluated for both algorithms in Figure 5. In an ROC
curve, the true positive rate of detecting anomaly signals (prob-
ability of detection) is evaluated against the false positive rate
(probability of false alarm) by varying the threshold values.
It can be observed that the anomaly detection performance
improves as the number of authorized transmitters increases

for both algorithms. This is a reasonable trend because more
authorized transmitters can provide more training signals
and, thus, better generalization capability for the classifier.
Moreover, for a smaller number of authorized transmitters,
the anomaly detection performance of Openmax is better than
that of OVA, and for larger number of authorized transmitters,
the anomaly detection performances are comparable between
the two methods. This might result from the differences
in decision boundaries between OVA and Openmax. When
the number of authorized transmitters is small, the binary
classifiers in OVA result in loose decision boundaries for the
signals. However, as Openmax detects anomalies based on
the distribution of each separate class, the decision boundary
is less affected by the number of authorized transmitters.
Moreover, it can be observed from Figure 5 (b) that with a
10% false alarm rate, Openmax can achieve more than 99%
anomaly signal detection rate.

C. Anomaly Label Assignment

To evaluate the clustering performance, we still consider
3 anomaly transmitters and different numbers of authorized
transmitters. The clustering is based on the anomaly detection
results of Openmax algorithm with a 10% false alarm rate.

After anomaly detection, we first compare the candidate
unsupervised clustering algorithms for anomaly label assign-
ment. The candidate algorithms are HDBSCAN, as discussed
in Section III-C, Mean-Shift clustering [17], and Agglomer-
ative clustering [18]. The Mean-Shift algorithm clusters by
iteratively updating the candidates for centroids to be the mean
of the points within a given region, and the Agglomerative
algorithm clusters by recursively merging smaller clusters. o
evaluate the clustering performance, we apply the V-Measure
[19] score as the metric, which is shown in Equation (6).

V =
(1 + β) ∗ h ∗ c

β ∗ h+ c
(6)

In Equation (6), β = 1 is a hyper-parameter that balances the
importance of h and c, where h represents homogeneity and c
represents completeness. Given a set of classes, C = {ci|i =
1, . . . , n} and a set of clusters, K = {ki|i = 1, . . . ,m}, h and
c are defined as following:

h =

{
1 , if H(C,K) = 0

1− H(C|K)
H(C) , otherwise

(7)

c =

{
1 , if H(K,C) = 0

1− H(K|C)
H(K) , otherwise

(8)
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V-Measure score ranges from 0 to 1, and a higher score
indicates a better clustering result.

The clustering performance is only evaluated on the de-
tected anomaly signals after the removal of noise clusters
and authorized clusters, as explained in Section III-C, and the
comparison result is shown in Figure 6.

From Figure 6, we can observe that HDBSCAN yields a
consistent and better clustering performance than the other
two candidate algorithms. Unlike the other two algorithms,
HDBSCAN requires a lower number of hyperparameters.
This relaxation potentially enables the performance to be
less dependent on the signal features being clustered and,
thus, to have more consistent results. Therefore, we choose
HDBSCAN as the algorithm for anomaly label assignment.

After deciding the clustering algorithm, we conduct the
experiment to evaluate the approach in the anomaly label
assignment stage. To be more specific, we compare the perfor-
mances between clustering with and without the signals from
authorized transmitters, as shown in Figure 7.

In Figure 7, it can be observed that if we perform clustering
without signals from authorized transmitters, the number of de-
tected anomaly transmitters will be dependent on the number
of authorized transmitters. Because all authorized transmitters
have signals that are wrongly rejected, the rejected signals
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Fig. 8. Comparison of anomaly transmitter tracking performance before and
after incremental learning, evaluated by classification accuracy among all
detected anomaly signals.

from the same authorized transmitter are likely to be clustered
together. Thus, those signals can result in an overestimated
number of anomaly transmitters and confuse the framework.
In conclusion, it can be shown that our proposed method,
which performs clustering with signals from authorized trans-
mitters and removes the noisy clusters, can significantly help
to improve the anomaly label assignment performance. For
the rest of the experiments, we use our proposed anomaly
label assignment method with HDBSCAN as the clustering
algorithm.

D. Anomaly Feature Learning

Next, we evaluate the anomaly transmitter tracking perfor-
mance. For the evaluations, we consider 3 anomaly trans-
mitters, 25 authorized transmitters, and different numbers of
received signals from each anomaly transmitter. The input
data for the feature learning are based on the anomaly
labels assigned by HDBSCAN together with the proposed
false positive signal removal method, where the anomaly
label assignment is based on the anomaly detection results
of Openmax algorithm with a 10% false alarm rate. We
compare the performance before and after the incremental
learning stage, where the performance is evaluated by the
classification accuracy between the detected anomaly signals.
The classification accuracy before the incremental learning
stage is calculated based on the correctness of the labels
assigned by the clustering algorithm. The comparison result
is shown in Figure 8.

In Figure 8, there is an improvement in the accuracy after
incremental learning with respect to with clustering only. This
improvement in the classification accuracy can be the result
of the additional information provided by the offline training
signals, which the incremental learning stage utilizes to update
the classifier. This improvement demonstrates the necessity
of the incremental learning stage. Moreover, it can also be
observed that the accuracy after incremental learning follows
the same trend as the accuracy before incremental learning,
which shows that the quality of clustering results will indeed
affect the final performance.

Finally, we consider the overall recognition and tracking
performance after incremental learning. For that purpose, we
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Fig. 9. Performance of the ART framework, evaluated by the classification
accuracy between signals from all authorized and incrementally learned
anomaly transmitters.

evaluate the classification accuracy among the signals from
all authorized and anomaly transmitters that have appeared in
normal operation. The result is shown in Figure 9.

In Figure 9, we can observe that the classification ac-
curacy is consistently higher than 99%. This result shows
that incremental learning does not lead to any performance
degradation in identifying authorized transmitters. Overall, the
ART framework is able to effectively recognize and track
anomaly transmitters after receiving as few as 10 signals
from each anomaly transmitter while being able to accurately
identify authorized transmitters.

V. CONCLUSION

In this work, we considered the security concerns in
spectrum sensing. Specifically, we discussed that to ensure
spectrum security. It is crucial to enforce transmitter authority
and track malicious anomaly transmitter activities for further
analysis. Therefore, we formulated the problem of recognizing
and tracking anomaly transmitters. To address this problem,
we proposed the ART framework and evaluated it with a
real captured WiFi dataset. We found that with 10% false
alarm rate, ART can detect more than 99% anomaly signals.
With 10 signals received from each anomaly transmitter, the
framework can track the anomaly transmitters with more
than 95% accuracy while being able to classify among the
authorized transmitters with more than 99% accuracy.

While the performance in current evaluations is good, it still
has some limitations. For example, the current ART framework
requires prior information about all authorized transmitters. As
a result, while it can incrementally learn features about new
transmitters, it may not perfectly handle a dynamic network
condition yet. Moreover, the current anomaly detection method
depends on statistical modeling of signal feature distributions.
Therefore, it might fail if the distributions become unstable
or inconsistent due to reasons such as varying channels or
signal-to-noise (SNR) ratios. As a result, more work will
need to be done to ensure the robustness of the anomaly
detection in different scenarios. At the same time, we can
observe that the final tracking performance depends on the
anomaly label assignment by clustering. Therefore, it is also

important to develop more reliable clustering algorithms, as
well as robust incremental learning algorithms against noisy
label assignments. In future works, we will look into these
aspects and improve the framework’s robustness and reliability
in different scenarios.
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